IT CHAUTARI
Saturday, 1 August 2020
Residual current
Wednesday, 22 July 2020
Why to use N95 mask? Science behind the scene.
- Inertial impaction: With this mechanism, particles having too much inertia due to size or mass cannot follow the airstream as it is diverted around a filter fiber. This mechanism is responsible for collecting larger particles.
- Interception: As particles pass close to a filter fiber, they may be intercepted by the fiber. Again, this mechanism is responsible for collecting larger particles.
- Diffusion: Small particles are constantly bombarded by air molecules, which causes them to deviate from the airstream and come into contact with a filter fiber. This mechanism is responsible for collecting smaller particles.
- Electrostatic attraction: Oppositely charged particles are attracted to a charged fiber. This collection mechanism does not favor a certain particle size.
In all cases, once a particle comes in contact with a filter fiber, it is removed from the airstream and strongly held by molecular attractive forces. It is very difficult for such particles to be removed once they are collected. As seen in Figure 2, there is a particle size at which none of the “mechanical” collection mechanisms (interception, impaction, or diffusion) is particularly effective. This “most penetrating particle size” (MPPS) marks the best point at which to measure filter performance. If the filter demonstrates a high level of performance at the MPPS, then particles both smaller AND larger will be collected with even higher performance.
This is perhaps the most misunderstood aspect of filter performance and bears repeating. Filters do NOT act as sieves. One of the best tests of a filter’s performance involves measuring particle collection at its most penetrating particle size, which ensures better performance for larger and smaller particles. Further, the filter’s collection efficiency is a function of the size of the particles, and is not dependent on whether they are bioaerosols or inert particles.
Reference;Niosh science.
Alternate magnetic field of earth
To understand what's happening, says Glatzmaier, we have to take a trip ... to the center of the Earth where the magnetic field is produced.
At the heart of our planet lies a solid iron ball, about as hot as the surface of the sun. Researchers call it "the inner core." It's really a world within a world. The inner core is 70% as wide as the moon. It spins at its own rate, as much as 0.2° of longitude per year faster than the Earth above it, and it has its own ocean: a very deep layer of liquid iron known as "the outer core
."It takes billions of years to alternate the position of North and South pole. Noone knows exactly that why the magnetic field of earth flip flop.
What is your opinions on this content ?………
Sunday, 12 July 2020
Superconductor and its reality.
Saturday, 11 July 2020
Do you know the secret of turmeric?
Friday, 3 July 2020
Thermocouple and its basic principle
Thursday, 2 July 2020
The lightest electromagnetic shielding material
Aerogels against electromagnetic radiation
A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nyström. The researchers are using nanofibers of cellulose as the basis for an aerogel(lightest solid), which is a light, highly porous material. Cellulose fibers are obtained from wood and, due to their chemical structure, enable a wide range of chemical modifications. They are therefore a highly popular research object. The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nyström's team at Empa.
The researchers have succeeded in producing a composite of cellulose nanofibers and silver nanowires, and thereby created ultra-light fine structures which provide excellent shielding against electromagnetic radiation. The effect of the material is impressive: with a density of only 1.7 milligrams per cubic centimeter, the silver-reinforced cellulose aerogel achieves more than 40 dB shielding in the frequency range of high-resolution radar radiation (8 to 12 GHz) - in other words: Virtually all radiation in this frequency range is intercepted by the material.
Ice crystals control the shape
Not only the correct composition of cellulose and silver wires is decisive for the shielding effect, but also the pore structure of the material. Within the pores, the electromagnetic fields are reflected back and forth and additionally trigger electromagnetic fields in the composite material, which counteract the incident field. To create pores of optimum size and shape, the researchers pour the material into pre-cooled molds and allow it to freeze out slowly. The growth of the ice crystals creates the optimum pore structure for damping the fields.
With this production method, the damping effect can even be specified in different spatial directions: If the material freezes out in the mold from bottom to top, the electromagnetic damping effect is weaker in the vertical direction. In the horizontal direction—i.e. perpendicular to the freezing direction—the damping effect is optimized. Shielding structures cast in this way are highly flexible: even after being bent back and forth a thousand times, the damping effect is practically the same as with the original material. The desired absorption can even be easily adjusted by adding more or less silver nanowires to the composite, as well as by the porosity of the cast aerogel and the thickness of the cast layer.
The lightest electromagnetic shield in the world
In another experiment, the researchers removed the silver nanowires from the composite material and connected their cellulose nanofibres with two-dimensional nanoplates of titanium carbide, which were produced using a special etching process. The nanoplates act like hard "bricks" that are joined together with flexible "mortar" made of cellulose fibers. This formulation was also frozen in cooled forms in a targeted manner. In relation to the weight of the material, no other material can achieve such shielding. This ranks the titanium carbide nanocellulose aerogel as by far the lightest electromagnet
Residual current
In the electrical circuits residual current is the electrical current which flows in a circuit when the voltage is reduced to zero. Somewhe...
-
Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring...
-
Thermocouple is the device which is made up of combination of two different material (wires) in the specific circuit. It's main signific...
-
To preserve from pendemic disease, airborne particles we use mask.In current situation: Due to covid-19 doctors and experts recommend to wea...










